
1 Joints Problem

Definition 1.1. Let L be a set of lines in R3. A joint of L is any point that lies in the intersection of three

non-co-planar lines of L. The Joints problem is to find suitable upper bounds to the maximum number of

joints possible in L lines, for any given L ≥ 3.

Every joint is a triple intersection point (ie intersection of three lines). Since, any two distinct lines intersect

in at most 1 point, there are no more than
(
L
2

)
= L2 triple intersection points in any set of L lines. If the

lines intersecting at any such triple intersection point are non-co-planar, then this point is a joint. Hence,

a crude upper bound for the joints problem is L2.

Example 1. Consider an S × S × S grid of points with S ∈ N. Let LG be the set of all axis-parallel lines

that intersect the grid. Then, any three lines intersecting at a grid point in LG are non-co-planar, and

hence every one of the S3 grid points is a joint. One can show that there are LG := 3S2 lines in LG and

S3 ≤ 3
√
3S3 = L

3/2
G joints.

Example 2. Let LT be the 6 lines containing each of the LT := 6 edges of a tetrahedron. Then, each

vertex of the tetrahedron is a joint as the three edges intersecting at any vertex are non-co-planar. Hence

there are 4 ≤ 6
√
6 = L

3/2
T joints in LT . Actually, one can show that any set of 6 lines has at most 4 joints

(Exercise).

Example 3. We generalize the previous example from S = 4 planes to S ≥ 3 planes. Suppose LP is the

set of lines in the intersection of any two planes in some given set of S ≥ 3 planes in general position (ie any

two planes of this set intersect in a line and any three planes of this set intersect in a point). Since every line

in LP is formed by intersection of 2 planes out of S planes, there are LP :=
(
S
2

)
lines in LP . One can show

that every triple intersection point is the unique point in the intersection of some three planes of the given S

planes, and there are
(
S
3

)
of those. Hence, the number of joints ≤

(
S
3

)
= S(S−1)(S−2)

6 ≤
(
S(S−1)

2

)3/2
= L

3/2
P .

2 Joints Problem With Polynomials

Lemma 2.1. Let L be a set of lines in R3 with J joints, and let F : R3 → R be a some smooth function

that vanishes on each l ∈ L. Then, p ∈ R3 is a joint of L =⇒ ∇F (p) = 0.

Proof. We consider tangent vectors at the joint p to the three non-co-planar lines of p and show that the

directional derivative of F wrt each of these at p is 0. Finally, we argue that since these three tangent

vectors span R3, the total derivative ie gradient of F is 0 at p, as well.
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Lemma 2.2. (Main Lemma) Let L be a set of lines in R3 that has J ̸= 0 joints. Then, there is a line in

L that contains at most 3J1/3 joints.

Proof. Taking S to be the set of J joints of L, we use the parameter counting argument to get a

non-zero polynomial of degree at most 3J1/3 that vanishes on S. We take fmin to be the lowest degree

polynomial among such polynomials. Arguing by contradiction, if each line in L contains > 3J1/3 joints,

then by the vanishing lemma, fmin vanishes on each line of L as its degree is atmost 3L1/3. Hence, by

the previous lemma, the gradient of fmin is zero as well, and in particular any partial derivative of fmin is

a polynomial of lower degree than fmin that vanishes on S, a contradiction.

Theorem 2.3. Any set L of L lines in R3 has at most 10L3/2 joints.

Proof. The strategy is to use the main lemma to remove lines (each containing at most 3J1/3 joints of L)

one at a time until there are no more lines (and hence no more joints) left, as follows,

J(L) ≤ J(L\{l1})+3J1/3 ≤ J(L\{l1, l2})+3(2)J1/3 ≤ . . . J(L\{l1, . . . , lL})+3(L)J(L)1/3 = 3LJ(L)1/3.

Hence, J(L) ≤ 33/2L3/2 = 3
√
3L3/2 ≤ 10.L3/2.

3 Joints Problem Without Polynomials

Instead of counting joints, since we are interested in the maximum number of joints of L lines, we could

move these lines around in R3 hoping to maximize the number of triple intersection points that are joints,

provided the total number of triple intersection points remains constant.

Definition 3.1. Suppose L = {l1, l2, . . .} is a set of lines and E = {p1, p2, . . .} is a set of points. The

incidence matrix is st the i, j-th entry is 1 if pj ∈ li and 0 otherwise. A perturbation of (L, E) is a pair

(L′, E′), for some L′ set of lines and E′ set of points, st I(L, E) = I(L′, E′).

So, we can try to rule out the possibility of perturbations with more than CL3/2 joints. One way to do

this is note that every triangle lies in a unique plane and can be uniquely characterized as three lines and

three points such that every line has exactly two of these three points. Moreover, triangles are preserved

by perturbations. Finally, using the following proposition, we can force more lines to be in the same plane

as the three lines of a trinagle.

Proposition 3.1. Suppose (l1, l2, l3) are the three lines of a triangle lying in a plane π. Let l be a line

distinct from these three lines. Then, l intersects any two lines of the triangle =⇒ l also lies in the plane

π. (See Figure 1a for proof).
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(a) Proof of Proposition 3.1 (b) Triangle Method for (L0, E0)

Since, perturbations have same incidence matrices, these four lines are non-co-planar in any perturbation.

This method, called the triangle method, shows (see Figure 1b) that at most 2 triple intersection points

of (L0, E0) (where L0 is set of lines x = c, y = c, y = x or y = x ± c for c ∈ [1, . . . , N ]; E0 is set of triple

intersection points of these lines) are joints under any perturbation, hence proving the joints problem

statement for this particular configuration of lines. However, more generally, paper [1] is able to only

show that L lines determine o(L2) joints, which is no more than an ϵ improvement from L2. This is a

consequence of existence of large triangle-free subsets.

Theorem 3.1. (Proposition 3.2 in [1]) For any ϵ > 0, and for any large L, there is a set L of L lines in

R2 and a set F ⊆ R2 st the number of triple intersection points in F is ≥ L2−ϵ and (L, F ) is triangle free

(ie has no triangle of (L, E)).

While we do not prove this theorem in such a generality, we shall prove it for (L0, E0) (which, as we shall

see, is already rather tedious to show without polynomials). Let B ⊆ [1, . . . , 2N ]. Define F (B) := {(x, y) ∈

[1, . . . , N ]2 : x+ y ∈ B} ⊆ E0.

Lemma 3.2. B ⊆ [1, . . . , 2N ] contains no 3-term progressions =⇒ (L0, F (B)) has no triangles of (L0, E0).

Proof. Consider the tiangle in Figure 2. We argue that c1, c2, c3 are a 3-term arithmetic progression in B

by noting that a3 = a2, b2 = b1, b3 − a3 = b1 − a1, and hence, c3 − c2 = a3 + b3 − a2 − b2 = b3 − b2 =

b3 − b1 = a3 − a1 = a2 − a1 = a2 + b2 − a1 − b1 = c2 − c1.

Theorem 3.3. (Behrend) For any ϵ > 0, for all N sufficiently large, there is B ⊆ [−N, . . . , N ] (one just

shifts each i ∈ [−N, . . . , N ] by N) with no 3-term arithmetic progressions and |B| >∼ N1−ϵ.

To prove this theorem, we make use of the following lemma, called Behrends’ construction.
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Figure 2: Correspondence between triangles and 3-term arithmetic progressions

Lemma 3.4. Let n ∈ N any. For any S ≥ 1, there exists A ⊆ [−S, . . . , S]n with no 3-term arithmetic

progressions and |A| ≥ c(n)Sn−2.

Proof. The integer lattice [−S, . . . , S]n := {x ∈ Zn : xi ∈ [−S, S]} has (2S + 1)n > Sn points. For each

x ∈ [−S, . . . , S]n ⊆ Zn, |x|2 ∈ {1, . . . , nS2}, as such, [−S, . . . , S]n =
nS2⊔
k=1

Ak where Ak := [−S, . . . , S]n∩Cn,k

for k ∈ {1, . . . , nS2} and Cn,k, the n-sphere of radius
√
k. So, there are Sn objects to be filled in nS2

places. Hence, by the pigeonhole principle, there is some AM st |AM | ≥ Sn

nS2 = 1
nS

n−2. We take A := AM .

Since points in A are on a sphere, any 3-term arithmetic progression of A must lie on a line, and any line

intersects the sphere in at most 2 points, we are done.

Finally, we have the following result on existence of large traingle-free subsets of (L0, E0).

Theorem 3.5. For any ϵ > 0, for all L sufficiently large, there is a subset F ⊆ E0 st (L0, F ) is triangle

free and |F | ≥ L2−ϵ.

Proof. This follows from Behrend’s theorem and Lemma 3.2.

4 Why Polynomial Methods Work?

There are ∼ Dn polynomials of degree at most D in n-variables. This gives us a lot of flexibility (Dn

degrees of freedom, apriori). Using this, the parameter counting argument ensures that given a finite set

S there is at least one non-zero polynomial of degree at most n|S|1/n that vanishes on the set S. On the

other hand, the vanishing lemma says that polynomials of degree atmost D in n-variables that vanish at

more than D points of a line, are identically zero on this line. That is polynomials behave rigidly on lines

(with only D degrees of freedom).
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Combining these two results, one gets that there is a non-zero polynomial that vanishes on a given set

S, the degree of this polynomial is bounded by n|S|1/n and it cannot vanish at more than n|S|1/n points

on a line. It is this gap, between Dn degrees of freedom and D degrees of freedom that allows us to use

polynomial methods.
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